# Function iaimg2se

namespace: morph iaimg2se

# Synopse

Create a structuring element from a pair of images.

• B = iaimg2se(fd, FLAT="FLAT", f=NULL)
• B: Structuring Element
• fd: Image The image is in the matrix format where the origin (0,0) is at the matrix center.
• FLAT: String Structuring element: 'FLAT' or 'NON-FLAT'.
• f: Image
```01. from numpy import *
02. from string import upper
03.
04. def iaimg2se(fd, FLAT="FLAT", f=None):
05.     from iaisbinary import iaisbinary
06.     from iaseshow import iaseshow
07.     from ialimits import ialimits
08.
09.     fd = (fd > 0)
10.     #assert iaisbinary(fd),'First parameter must be binary'
11.     FLAT = upper(FLAT)
12.     if FLAT == 'FLAT':
13.         return iaseshow(fd)
14.     else:
15.         B = choose(fd, ( ialimits(int32([0]))[0]*ones(fd.shape),f) )
16.     B = iaseshow(int32(B),'NON-FLAT')
17.
18.     return B```

# Description

iaimg2se creates a flat structuring element B from the binary image fd or creates a non-flat structuring element b from the binary image fd and the gray-scale image f. fd represents the domain of b and f represents the image of the points in fd.

# Examples

iaimg2se to create structuring elements. In the example below, the flat 3x3 diamond is created.

## Example 1

```01. from ia870 import iaimg2se
02. from ia870 import iabinary
03. from ia870 import iaseshow
04.
05.
06. a = iaimg2se( iabinary([
07.   [0,1,0],
08.   [1,1,1],
09.   [0,1,0]]))
10. print iaseshow(a)```
```[[False  True False]
[ True  True  True]
[False  True False]]
```

## Example 2

```1. b = iabinary([
2.   [0,1,1,1],
3.   [1,1,1,0]])
4. b1 = iaimg2se(b)
5. print iaseshow(b1)```
```[[False False False False False]
[False False  True  True  True]
[False  True  True  True False]]
```

## Example 3

```01. c = iabinary([
02.   [0,1,0],
03.   [1,1,1],
04.   [0,1,0]])
05. d = int32([
06.   [0,0,0],
07.   [0,1,0],
08.   [0,0,0]])
09. e = iaimg2se(c,'NON-FLAT',d)
10. print iaseshow(e)```
```[[-2147483647           0 -2147483647]
[          0           1           0]
[-2147483647           0 -2147483647]]
```

# Equation

H and W are the number of rows and columns of f, respectively.