Contents

back to iatexture

Function normgausker normalization

Synopse

The normgausker function performs a local normalization algorithm based on the Gaussian Kernel

• g = *normgausker(f)
• Output
• g: output image
• Input
• f: ndarray: input image.

Description

The normgausker function performs a local normalization algorithm used to normalize the local mean and variance of the image estimated by a Gaussian Kernel using smoothing operators

Function Code

```1 def normgausker2(f):
2     mu = f.mean()
3     sigma = f.std()
4     return 1.0*(f-mu)/sigma
```

Example

``` 1 import ia636
2 from normgausker import normgausker
3
4 f = adreadgray('p/LesionMRI/EM/Iani Surian Batalini - 746587-5 - 32A/22.png')
5 roi = adreadgray('p/LesionMRI/EM/Iani Surian Batalini - 746587-5 - 32A/Peri_22_1.png')>0
6 adshow(f, 'original image')
7 print 'f.min,f.max()',f.min(),f.max()
8
9 result = normgausker(f)
10 adshow(ia636.ianormalize(result),'norm gaussian kernel result')
11 print 'result.min,result.max()',result.min(),result.max()
```
```f.min,f.max() 1 254
result.min,result.max() -0.704345758699 6.58994984826
```